Incorporating Computer Models into Traditional Physics Labs

Students collecting motion data.

Photo: Students collecting motion data.

In an effort to achieve consistency with current expectations of university physics students in rigorous science and engineering programs, I have implemented laboratory investigations that seek to provide students with opportunities to explore real world motion using modern tools and techniques that are grounded in fundamental physics principles. My goal is for the students to be able to:

  • Observe and video everyday motion and then analyze the video to extract motion data.
  • Apply fundamental physics principles to analyze and describe the motion and then to develop computer models that explain and predict motion based on these principles.
  • Effectively communicate results (the observations, the models, and comparisons between them).
  • Critique their own work and the work of their peers.

My students have completed their first assignment that required that they explore the effects of air resistance by observing the motion of an object dropped from rest and allowed to fall straight down. The students were instructed to choose an object that would be noticeably affected by air resistance. The students selected objects such as coffee filters, Styrofoam lunch trays, crumpled paper, etc., and the adventure began. The students posted their final results on YouTube to allow for peer assessment of their final products.

I was very pleased and impressed with my students’ motivation and ability to meet this challenge. At first, some of them were intimated by working with computer code but quickly became comfortable with this new method of analyzing motion. Some sample student projects are provided below: