Original photographer by the author

Ode to Gravity

An original poem by Houston McClurkan, AP Physics 1 student
Featured image is an original photograph by the author

Gravity_river

Original photography by the author

Gravity
A relentless force,
You bind us together,
We cannot find you because you are not visible,
But we can capture you in many earthly visuals,

Where did you come from we will never know,
Your strength and power cause rivers to flow,

Though we cannot see you we know you’ll come through,
Your relentless force will always reign true,

The night sky seems still,
We know that’s not real,
You cause the stars in the sky,
To appear as if they fall like a hill.

Gravity,
A relentless force,
Causing the orbit of our earthy orb.

Quantized Magazine. All Rights Reserved.

The Magic of the Ocean and the Moon

Bree

Original artwork by the author

by Bree Gerold, AP Physics 1 Student

Perhaps it is the oh so exciting thought of spring break quickly approaching, or maybe it is my constant fascination with the ocean, but recently I have found myself in a daydream about the beach.  Ever since I was a little girl, I have always been fascinated by the rising and the falling of the ocean waves.  I remember that it always baffled me how the ocean could get bigger, then shrink back up again, like clockwork.  I didn’t understand it.  I didn’t understand gravity, I didn’t understand physics.  Perhaps there is a bit of magic to that; to the complete innocence of a child who is so easily mesmerized by something as simple as the ocean’s tides.  That’s what it was to me.  It was magic.

Now as a senior in high school, I have been through many physics classes and have managed to gain at least enough knowledge to understand how the moon and the ocean create the tides.  Ocean tides are created by combining the gravitational pull of the moon and the sun, combined with the rotation of the earth. The moon’s gravitational pull is stronger than the sun’s which makes it the most important factor in creating tides. The tides are really long-period waves that appear as the rise and fall of the sea as they reach the coastline. High tide is the crest of the long-period wave and low tide is the trough of the long-period wave. The earth rotates on its axis once every 24 hours and the moon rotates around the earth once every 28 days. The moon pulls upward on the ocean while the earth pulls down. This causes tidal movement. The tidal troughs are separated by about 12 hours. Because the moon rotates around the earth, it’s not in the same place at the same time every day.  So the high and low tide times change every day by about 50 minutes.

Even now, after understanding the physics of it all, it still seems like magic.  It is magical how the moon, that is so far away, can have such a compelling effect on the little girl I once was.

Works Cited

“Ten Cool Facts About Ocean Tides.” Oceans52. WordPress, 05 Apr. 2012. Web. 06 Mar. 2016.

Quantized Magazine. All Rights Reserved.

Earth, Physics and Imagination

by Leslie Medina, AP Physics 1 student

Leslie painting

Painting by Leslie Medina

When I think of Mother Earth, I imagine hearing a pulse, and I visualize all the natural beauty that Earth contains. When I give such human-like qualities to Earth, I envision her breathing, even though I know this is not how things work. I think about all the possibilities and opportunities that Earth has given us. The ability to live, explore, and gain knowledge about our universe and the galaxies that endlessly fascinate us. When I depicted Earth breathing and exhaling, I was visualizing how Earth metaphorically takes in knowledge of its surroundings.

With this knowledge, there is an even greater desire to learn more about Earth, space, and life itself. Physics explores many things concerning these expansive topics and attempts to offer an explanation of all the extraordinary phenomena that surround us. On my painting, various equations and key details concerning gravity, orbits, and planets, appear as stars in the night sky. What I’ve come to realize is that these equations not only fill up the background space of my painting, but they also fill up the spaces in our curious minds with an abundance of knowledge.

About the author:
Leslie Medina is an Honors/AP student at Creekview High School, and she is also an amazing artist.

Quantized Magazine. All Rights Reserved.

Image

What are Dark Matter and Black Holes?

by Briana Purves, 6th period CP Physics

Most people consider dark matter and black holes to be mysteries; however, with the help of scientists and technology, these mysteries can be understood! Dark matter is a nonluminous material that exists in space and can appear in many different forms. Black holes are a region of space with a gravitational field so intense that no matter or radiation can escape it. Black holes also have the ability to deflect light, but dark matter does not. Overall, there are many things that we can learn about both dark matter and black holes.

Nonluminous, dark matter is postulated to exist in space and can take any of several forms, including weakly interacting particles or even high energy randomly moving particles created soon after the Big Bang. Although it is not in the form of visible stars and planets, scientists have deduced the existence of dark matter because there is not enough visible matter in the universe to account for the gravitational effects present in the universe. Research supports that dark matter makes up a substantial percentage of the matter-energy composition of the universe, while the rest is dark energy and “ordinary” visible matter. Dark matter is not in the form of dark clouds filled with normal matter, but can be seen as matter made by baryons particles that are composed of protons, neutrons, and electrons.

Dark matter was originally known as the “missing mass” until Fritz Zwicky discovered that the mass of all the stars in the Coma Cluster of galaxies provided about one percent of the mass required to keep the galaxies from escaping the cluster’s gravitational pull. Missing mass remained a question until the 1970s when two American astronomers proved its existence through the idea that the mass of the galaxy within the orbit of stars must increase linearly with the distance of stars from the galaxy’s center. Also, dark matter is not capable of being composed of antimatter, because scientists would be able to see gamma rays that have been produced when antimatter annihilates with matter. Scientists are still unsure of the exact composition of dark matter, but the most common view is that dark matter is made up of exotic particles called axions, or weakly interacting massive particles.

Conversely, black holes are a region of space that has a gravitational field so intense that no matter or radiation can escape it. The gravity of a black hole is so strong because the matter has been squeezed into the tiny space, not allowing it to escape. People cannot see black holes, as they are invisible to the human eye, and can only be detected by advanced special telescopes. Black holes come in many different sizes and shapes, from the size of a large planet to as small as just one atom. Even the extremely small black holes contain massive amounts of matter inside.

One type of black hole that has been discovered is called a Stellar. Stellars can grow to be up to twenty times as big as the mass of the sun; however, there are black holes that can grow to be even bigger; these black holes are called Supermassives. Supermasssives can have masses up to one million times greater than the sun’s mass. Scientists have found that these Supermassive black holes are most commonly found in the Milky Way (also known as Sagittarius A) and have a mass equal to four-million suns and a few million earths.

Black holes are formed when the center of a star falls in on itself causing a supernova or when an exploding star blasts parts into space. Many black holes cannot be seen today because of the strong gravitational pull of light into the center of the hole. When a black hole and a star are near each other, high energy light is made that can only be seen by satellites and telescopes in space.

Einstein’s Law of General Relativity explains why black holes deflect light. Einstein’s law states that a ray of light arriving from one side of an object is bent inwards so that its apparent direction of origin, when viewed from the opposite side, is seen as a different angle. The observed gravitational effect between masses will result from their warping of space-time. Einstein’s Law of General Relativity predicts that every object’s gravitational field bends light rays which is called gravitational lensing. According to Wikipedia, “A gravitational lens is a distribution of matter between a distant source and an observer, that is capable of bending the light from the source, as it travels towards the observer.” Einstein’s Law of General Relativity also supports that the gravitational fields of massive objects causes a distortion in space-time. Einstein’s Law of General Relativity proves just how black holes have the capability to deflect light, as they are able to bend light rays through its gravity.

People have the capability of learning infinite things about both dark matter and black holes. Such things can include how dark matter is known as a nonluminous material that is postulated to exist in space and that can take any of several forms, while, contrarily, black holes are known as a region of space that has a gravitational field so intense that no matter or radiation can escape. Black holes also have the capability to deflect light, which can be proven by Einstein’s Law of General Relativity and through gravitational lensing. If all of these things can be learned about dark matter and black holes through the writing of this one essay, imagine what can be learned throughout a lifetime.

About the author: IMG_1303 (2)
Briana Purves is not only an excellent physics student, she is an outstanding softball player.

Quantized Magazine. All Rights Reserved.

MEHAU KULYK/SCIENCE PHOTO LIBRARY

“What if gravity acted sideways?”

Feature photo credit: MEHAU KULYK/SCIENCE PHOTO LIBRARY

“So you see students, after the projectile is launched, it follows a trajectory whose vertical position as a function of time forms a parabola while the horizontal position—yes, a question?”

“Mrs. Geddes, I understand a projectile’s behavior in Earth’s gravity, but how would all that change if gravity acted sideways?”

And, thus, the thought experiment was launched, “What if gravity acted sideways?” Here is a clever and entertaining response:

Quantized Magazine. All Rights Reserved.